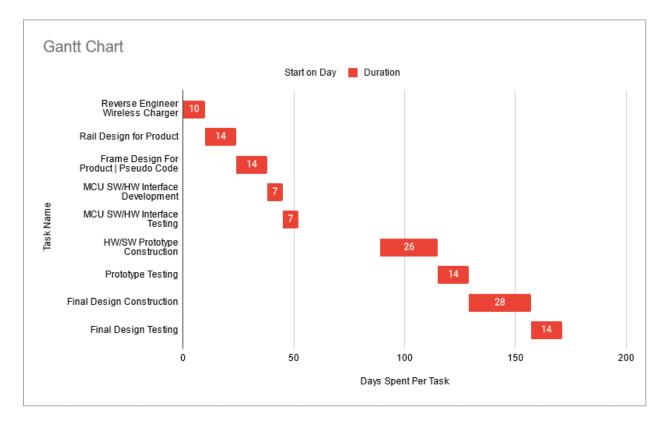
Project Management and Tracking Procedures


In the beginning, we are adopting a waterfall project management style as we are still in the planning/design stages of the project. Later on, after we establish a plan for designing the wireless charger and taking measurements, we will adopt a more agile style as there will be more moving pieces at the same time. We will use a few programs to coordinate within the group:

- Git for version control
- GitLab for a Git remote and for issue boards
- Discord for team communications and planning.

Task Decomposition

- Reverse engineer a wireless charger
 - Understand the inner workings
 - Connect current sensor to the output of the coil inside the charger
 - Is the maximum current output directly correlated with the alignment of the coil?
- Design a mechanical 2D plane such that the coil in the charger can move to any position on the charger
 - Use two stationary motors to move the inner coil
 - This will allow the coil to move with the least amount of resistance due to the light weight of the moving parts.
 - Ensure that the coil is able to move the entire range of the charger (i.e. it can optimize charging no matter the phone orientation)
 - Could be difficult to get the coil oriented all the way to the outer limits of the physical charger.
- Develop a software that can find the optimal location of the charging coil.
 - Scan the 2D plane
 - Find the max. current output for the x-axis
 - Find the max. current output for the y-axis
 - Ensure the scan time is as fast as possible.
 - Figure out a way to initiate the program
 - Could we use the current sensor to know when a phone is placed on the pad?
 - Also could use IR sensors if necessary.
- Design an attractive case for the charger.
 - Utilize a design that can inadvertently get the user to align the phone to the charger.
 - This could be a way to mitigate the risk of the charging coil not being able to reach the extreme values of the 2D plane
 - We could put small edges around the perimeter of the charging pad so the user will naturally place their phone within those boundaries.

Project Proposed Milestones, Metrics, and Evaluation Criteria

Project Timeline and Schedule

- 1. Reverse Engineer Wireless Charger and Confirm Charging Current Measurability | 10/20/22
- 2. Rail Design For Product | 10/30/22
- 3. Frame Design and Pseudo Code | 11/13/22
- 4. MCU Software Interface Development | 11/27/22
- 5. MCU Software Interface Testing | 12/4/23
- 6. HW/SW Prototype Construction | 1/17/23
- 7. Prototype Testing | 2/12/23
- 8. Final Design Construction | 2/26/23
- 9. Final Design Testing | 3/26/23

Risks and Risk Management and Mitigation

- Reverse Engineer Wireless Charger and Confirm Charging Current Measurability
 | Misreading current values | 0.8 | Mitigation: confirm measurements with partner and remeasure
- 2. Rail Design For Product | No real risks | 0.0
- 3. Frame Design and Pseudo Code | No real risks | 0.0
- MCU Software Interface Development | Misunderstanding how components work | 0.1
- 5. MCU Software Interface Testing | Misunderstanding how components work from previous step | 0.1
- 6. HW/SW Prototype Construction | Damaged part while building | 0.4
- 7. Prototype Testing | Damaged part while testing | 0.3
- 8. Final Design Construction | Damaged part while building | 0.4
- 9. Final Design Testing | Damaged part while testing | 0.3

Personnel Effort Requirements

Reverse Engineering Wireless Charger	Every person will spend 3 hours on average to complete this task.
Rail Design For Product	Every person will spend 5 hours on average to complete this task.
Frame Design and Pseudo Code	Every person will spend 5 hours on average to complete this task.
MCU Software Interface Development	Every person will spend 4 hours on average to complete this task.
MCU Software Interface Testing	Every person will spend 4 hours on average to complete this task.
Prototype Testing	Every person will spend 5 hours on average to complete this task.
Final Design Construction	Every person will spend 4 hours on average to complete this task.
Final Design Testing	Every person will spend 5 hours on average to complete this task.

Other Resource Requirements

- Testing materials
 - Wireless charger
 - Multimeter
 - $\circ \quad \text{A breadboard}$
 - $\circ \quad \text{Jumper cables}$
 - Resistors
- Design materials
 - Resistors
 - $\circ \quad \text{Qi charging coil} \\$
 - $\circ \quad \text{Arduino microcontroller}$
 - \circ Wires
 - \circ Solder
 - Motors (Servo or Stepper)
 - 3D printer to print
 - Frame
 - Rails